Линеаризация уравнений продольного движения самолета. Уравнения продольного движения самолета Полная система уравнений движения самолета

Обычно полёт самолёта рассматривают как движение в пространстве абсолютно жёсткого тела. При составлении уравнений движения используют законы механики, позволяющие в самом общем виде записать уравнения движения центра масс самолёта и его вращательного движения вокруг центра масс.

Исходные уравнения движения вначале записывают в векторной форме

m - масса самолета;

Равнодействующая всех сил;

Главный момент внешних сил самолёта, вектор суммарного вращающего момента;

Вектор угловой скорости системы координат;

Момент количества движения самолёта;

Знак «» обозначает векторное произведение. Далее переходят к обычной скалярной записи уравнений, проектируя векторные уравнения на некоторую систему координатных осей.

Получаемые общие уравнения оказываются настолько сложными, что, по существу, исключают возможность проведения наглядного анализа. Поэтому в аэродинамике летательных аппаратов вводятся различные упрощающие приёмы и предположения. Очень часто оказывается целесообразным разделить полное движение самолёта на продольное и боковое. Продольным называется движение с нулевым креном, когда вектор силы тяжести и вектор скорости самолёта лежат в его плоскости симметрии. Далее будем рассматривать только продольное движение самолёта (рис. 1).

Это рассмотрение будем вести с использованием связанной ОXYZ и полусвязанной ОX e Y e Z e систем координат. За начало координат обеих систем принимается точка, в которой расположен центр тяжести самолета. Ось ОX связанной системы координат проводится параллельно хорде крыла и называется продольной осью самолета. Нормальная ось ОY перпендикулярна оси ОX и расположена в плоскости симметрии самолета. Ось ОZ перпендикулярна к осям ОX и ОY, а следовательно, и к плоскости симметрии самолета. Она называется поперечной осью самолета. Ось ОX e полусвязанной системы координат лежит в плоскости симметрии самолета и направлена по проекции на неё вектора скорости. Ось ОY e перпендикулярна оси ОX e и расположена в плоскости симметрии самолета. Ось ОZ e перпендикулярна к осям ОX e и ОY e .


Остальные обозначения, принятые на рис. 1: - угол атаки, - угол тангажа, - угол наклона траектории, - вектор воздушной скорости, - подъемная сила, - сила тяги двигателей, - сила лобового сопротивления, - сила тяжести, - угол отклонения рулей высоты, - момент тангажа, вращающий самолёт вокруг оси ОZ.

Запишем уравнение продольного движения центра масс самолёта

где - суммарный вектор внешних сил. Представим вектор скорости с использованием его модуля V и угла его поворота относительно горизонта:

Тогда производная вектора скорости по времени запишется в виде:

С учётом этого уравнения продольного движения центра масс самолёта в полусвязанной системе координат (в проекциях на оси ОX e и ОY e) примут вид:

Уравнение вращения самолёта вокруг связанной оси OZ имеет вид:

где J z - момент инерции самолета относительно оси OZ, M z - суммарный вращающий момент относительно оси OZ.

Полученные уравнения полностью описывают продольное движение самолета. В курсовой работе рассматривается только угловое движение самолёта, поэтому далее будем учитывать только уравнения (4) и (5).

В соответствии с рис. 1, имеем:

угловая скорость вращения самолёта вокруг поперечной оси OZ (угловая скорость тангажа).

При оценке качества управляемости самолета большое значение имеет перегрузка. Она определяется как отношение действующей на самолёт суммарной силы (без учёта веса) к силе веса самолёта. В продольном движении самолёта используют понятие «нормальная перегрузка». По ГОСТ 20058-80 она определяется как отношение проекции главного вектора системы сил, действующих на самолёт, без учёта инерционных и гравитационных сил, на ось OY связанной системы координат к произведению массы самолёта на ускорение свободного падения:

Переходные процессы по перегрузке и угловой скорости тангажа определяют оценку летчиком качества управляемости продольного движения самолета.

Выделение уравнений продольного движения из полной системы уравнений продольного движения самолета.

Наличие у ЛА плоскости материальной симметрии позволяет разделить его пространственное движение на продольное и боковое. К продольному движению относится движение ЛА в вертикальной плоскости при отсутствии крена и скольжения, при нейтральном положении руля и элеронов. При этом происходят два поступательных и одно вращательное движение. Поступательное движение реализуются вдоль вектора скорости и по нормали, вращательное – вокруг оси Z. Продольное движение характеризуется углом атаки α, углом наклона траектории θ, углом тангажа, скоростью полета͵ высотой полета͵ а также положением руля высоты и величиной и направлением в вертикальной плоскости тяги ДУ.

Система уравнений продольного движения самолета.

Замкнутая система, описывающая продольное движение самолета может быть выделœена из полной системы уравнений, при условии, что параметры бокового движения, а также углы отклонения органов управления креном и рысканьем равны 0.

Соотношение α = ν – θ оплучено из первого геометрического уравнения после его преобразования.

Последнее уравнение системы 6.1 не влияет на остальные и может быть решено отдельно. 6.1 – нелинœейная система, т.к. содержит в себе произведения переменных и тригонометрических функций, выражения для аэродинамических усилий.

Для получения упрощенной линœейной модели продольного движения самолета͵ крайне важно ввести определœенные допущения и провести процедуру линœеаризации. С целью обоснования дополнительных допущений, нам крайне важно рассмотреть динамику продольного движения самолета при ступенчатом отклонении руля высоты.

Реакция самолета на ступенчатое отклонение руля высоты. Разделœение продольного движения на долго- и кратковременное.

При ступенчатом отклонении δ в возникает момент М z (δ в), который вращает относительно оси Z со скоростью ω z . При этом происходит изменение угла тангажа и атаки. При увеличении угла атаки возникает приращение подъемной силы и соответствующий этому момент продольной статической устойчивости М z (Δα),который противодейсвует моменту М z (δ в). По истечению вращения, на определœенном угле атаки он его компенсирует.

Изменение угла атаки после уравновешивания моментов М z (Δα) и М z (δ в) останавливается, но, т.к. самолет обладает определœенными инœерциальными свойствами, ᴛ.ᴇ. обладает моментом инœерции I z относительно оси ОZ, то установление угла атаки носит колебательный характер.

Угловые колебания самолета вокруг оси ОZ будут демпфировать ся с помощью собственного момента аэродинамического демпфирования М z (ω z). Приращение подъемной силы начинает изменять направление вектора скорости. Изменяется также угол наклона траектории θ.Это в свою очередь влияет на угол атаки.Исходя из сбалансированности моментных нагрузок синхронно с изменением угла наклона траектории продолжает изменяться угол тангажа. При этом угол атаки – постоянный. Угловые движения на малом интервале происходят с высокой частотой, ᴛ.ᴇ. имеют короткий период и называются краткопериодическими.

После того, как затухнут кратковременные колебания, становится заметным изменение скорости полета. В основном за счет составляющей Gsinθ. Изменение скорости ΔV влияет на приращение подъемной силы, и как следствие, на угол наклона траектории. Последнее изменяет скорость полета. При этом возникают угасающие колебания вектора скорости по величинœе и направлению.

Указанные движения характеризуются низкой частотой, угасают медленно, в связи с этим их называют долгопериодическими.

При рассмотрении динамики продольного движения нами не была учтена дополнительная подъемная сила, создаваемая отклонением руля высоты. Данное усилие направлено на уменьшение полной подъемной силы, в связи с этим ддля тяжелых самолетов наблюдается явление просадки – качественное отклонение угла наклона траектории с одновременным увеличением угла тангажа. Это происходит пока приращение подъемной силы не скомпенсирует составляющую подъемной силы за счет отклонения руля высоты.

На практике, долгопериодические колебания не возникают, т.к. своевременно гасятся пилотом, или автоматическими органами управления.

Передаточные функции и структурные схемы матмодели продольного движения .

Передаточной функцией принято называть изображение выходной величены, по изображению входной при нулевых начальных условиях.

Особенностью передаточных функций самолета͵ как объекта управления является то, что отношение выходной величины, по сравнению со входной берется с отрицательным знаком. Это связано с тем, что в аэродинамике принято в качестве положенительного отклонения органов управления считать отклонения, которые создают отрицательные приращения параметров движения самолета.

В операторной форме записи имеет вид:

Системе 6.10, которая описывает кратковременное движение самолета соответствуют решения:

(6.11)

(6.12)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можем записать передаточные функции, которые связывают угол атаки и угловую скорость по тангажу от отклонения руля высоты

(6.13)

Для того, чтобы передаточные функции имели стандартный вид, введем следующие обозначения:

, , , , ,

Учитывая эти соотношения перепишем 6.13:

(6.14)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, передаточные функции по углу наклона траектории и по углу тангажа, в зависимости от отклонения руля высоты будут иметь следующий вид:

(6.17)

Одним из важнейших параметров, которые характеризуют продольное движение самолета является нормальная перегрузка. Перегрузка бывает: Нормальной (по оси ОУ), продольная (по оси ОХ) и боковая (по оси OZ). Вычисляется как сумма сил, действующих на самолет в определœенном направлении, делœенная на силу тяжести. Проекции на оси позволяют вычислить величину и соотношение ее с g.

- нормальная перегрузка,

Из первого уравнения сил системы 6.3 получим:

Используя выражения для перегрузки перепишем:

Для условий горизонтального полета ( :

Запишем структурную схему, которая соответствует передаточной функции:

-δ в M ω z ν ν α -
θ θ

Боковая сила Z a (δ н) создает момент крена М х (δ н). Соотношение моментов М х (δ н) и М х (β) характеризует прямую и обратную реакцию самолета на отклонение руля направления. В случае, если М х (δ н)по модулю больше, чем М х (β), самолет будет наклоняться в противоположную сторону разворота.

Принимая во внимание вышесказанное можем построить структурную схему для анализа бокового движения ЛА при отклонении руля направления.

-δ н М у ω y ψ ψ
β β
F z Ψ 1
Mx
ω y ω x

В режиме так называемого плоского разворота моменты крена компенсируются пилотом, либо соответствующей системой управления. Следует отметить, что при малом боковом движении самолет кренится, вместе с этим происходит наклон подъемной силы, что вызывает боковую проекцию Y a sinγ, которая начинает развивать большое боковое движение: самолет начинает скользить на наклоненное полукрыло, при этом увеличиваются соответствующие аэродинамические силы и моменты, и значит роль начинают играть так называемые "спиральные моменты": М у (ω х) и М у (ω z). Большое боковое движение целœесообразно рассматривать при уже наклоненном самолете, или на примере динамики самолета при отклонении элеронов.

Реакция самолета на отклонение элеронов.

При отклонении элеронов возникает момент М х (δ э). Самолет начинает вращаться вокруг связанной оси ОХ, при этом появляется угол крена γ. Демпфирующий момент М х (ω х) противодействует вращению самолета. При наклоне самолета вследствии изменения угла крена возникает боковая сила Z g (Уа), которая является результирующей от силы веса и подъемной силы У­ а. Эта сила "разворачивает" вектор скорости, при этом начинает меняться путевой угол Ψ 1 , что приводит к возникновению угла скольжения β и соответствующей силы Z a (β), а также момента путевой статической устойчивости М у (β), который начинает разворачивать продольную ось самолета с угловой скоростью ω у. Вследствие такого движения начинает меняться угол рысканья ψ. Боковая сила Z a (β) направлена в противоположную сторону по отношению к силе Z g (Уа) в связи с этим она в некоторой степени уменьшает скорость изменения путевого угла Ψ 1 .

Сила Z a (β) также является причиной момента поперечной статической устойчивости. М х (β), который в свою очередь старается вывести самолет из крена, а угловая скорость ω у и соответствующий ей спиральный аэродинамический момент М х (ω у) стараются увеличить угол крена. В случае если М х (ω у) больше М х (β) – возникает ак называемая "спиральная неустойчивость", при которой угол крена после возвращения элеронов в нейтральное положение продолжает увеличиваться, что приводит к развороту самолета с возрастающей угловой скоростью.

Такой разворот принято называть координированным разворотом, при этом угол крена задается пилотом, либо с помощью системы автоматического управления. При этом в процессе разворота компенсируются возмущающие моменты по крену М х β и М х ωу, руль направления при этом компенсирует скольжение, то есть β, Z a (β), М у (β) = 0, при этом момент М у (β), который разворачивал продольную ось самолета͵ замещается моментом от руля направления М у (δ н), а боковая сила Z a (β), которая препятствовала изменению путевого угла замещается силой Z a (δ н). В случае координированного разворота скорость (маневренность) увеличивается, при єтом продольная ось самолета совпадает с вектором воздушной скорости и разворачивается синхронно с изменение угла Ψ 1 .

В случае анализа динамики самолета, совершающего полет со скоростью, значительно меньшей орбитальной, уравнения движения по сравнению с общшм случаем полета летательного аппарата могут быть упрощены, в частности, можно пре­небречь вращением и сферичностью Земли. Кроме этого сделаем еще ряд упрощающих допущений.

только квазистатически, для текущего значения скоростного напора.

При анализе устойчивости и управляемости самолета будем использовать следующие прямоугольные правые системы осей координат.

Нормальная земная система координат OXgYgZg. Эта система осей координат имеет неизменную ориентацию относительно Земли. Начало координат совпадает с центром масс (ЦМ) самолета. Оси 0Xg и 0Zg лежат в горизонтальной плоскости. Их ориентация может быть принята произвольно, в зависимости от целей реша­емой задачи. При решении навигационных задач ось 0Xg часто направляют к Северу параллельно касательной к меридиану, а ось 0Zg направляют на Восток. Для анализа устойчивости и управляемости самолета удобно принять направление ориента­ции оси 0Xg совпадающим по направлению с проекцией вектора скорости на горизонтальную плоскость в начальный момент вре­мени исследования движения. Во всех случаях ось 0Yg направлена вверх по местной вертикали, а ось 0Zg лежит в горизонтальной плоскости и образует вместе с осями OXg и 0Yg правую систему осей координат (рис. 1.1). Плоскость XgOYg называют местной вертикальной плоскостью.

Связанная система координат OXYZ. Начало координат рас­положено в центре масс самолета. Ось ОХ лежит в плоскости симметрии и направлена вдоль линии хорд крыла (либо парал­лельно какому-либо другому, фиксированному относительно само­лета направлению) к носовой части самолета. Ось 0Y лежит в плоскости симметрии самолета и направлена вверх (при гори­зонтальном полете), ось 0Z дополняет систему до правой.

Углом атаки а называется угол между продольной осью самолета и проекцией воздушной скорости на плоскость OXY. Угол положителен, если проекция воздушной скорости самолета на ось 0Y отрицательна.

Углом скольжения р называется угол между воздушной ско­ростью самолета и плоскостью OXY связанной системы коорди­нат. Угол положителен, если проекция воздушной скорости на поперечную ось положительна.

Положение связанной системы осей координат OXYZ относи­тельно нормальной земной системы координат OXeYgZg может быть полностью определено тремя углами: ф, #, у, называемыми углами. Эйлера. Последовательно поворачивая связанную систему

координат на каждый из углов Эйлера, можно прийти к любому угловому положению связанной системы относительно осей нор­мальной системы координат.

При исследовании динамики самолетов используются следу­ющие понятия углов Эйлера.

Угол рыскания г]) - угол между некоторым исходным напра­влением (например, осью 0Xg нормальной системы координат) и проекцией связанной оси самолета на горизонтальную пло­скость. Угол положителен, если ось ОХ совмещается с проекцией продольной оси на горизонтальную плоскость поворотом вокруг оси OYg по часовой стрелке.

Угол тангажа # - угол между продольно# осью самолета ОХ и местной горизонтальной плоскостью OXgZg, Угол положителен, если продольная ось находится выше горизонта.

Угол крена у - угол между местной вертикальной плоскостью, проходящей через ось ОХ у и связанной осью 0Y самолета. Угол положителен, если ось О К самолета совмещается с местной вер­тикальной плоскостью поворотом вокруг оси ОХ по часовой стрелке. Углы Эйлера могут быть получены последовательными поворотами связанных осей относительно нормальных осей. Бу­дем считать, что нормальная и связанная системы координат в начале совмещены. Первый поворот системы связанных осей произведем относительно оси О на угол рыскания г]; (ф совпадает с осью OYgXрис. 1.2)); второй поворот -относительно оси 0ZX на угол Ф (‘& совпадает с осью OZJ и, наконец, третий поворот произведем относительно оси ОХ на угол у (у совпадает с осью ОХ). Проектируя векторы ф, Ф, у, являющиеся составляющими

вектора угловой скорости движения самолета относительно нор­мальной системы координат, на связанные оси, получим уравне­ния связи между углами Эйлера и угловыми скоростями вращения связанных осей:

со* = Y + sin *&;

o)^ = i)COS’&cosY+ ftsiny; (1.1)

со2 = ф cos у - ф cos Ф sin у.

При выводе уравнений движения центра масс самолета необ­ходимо рассматривать векторное уравнение изменения количества движения

-^- + о>xV)=# + G, (1.2)

где ю - вектор скорости вращения связанных с самолетом осей;

R - главный вектор внешних сил, в общем случае аэродинами-

ческих сил и тяги; G - вектор гравитационных сил.

Из уравнения (1.2) получим систему уравнений движения ЦМ самолета в проекциях на связанные оси:

т (гЗ?~ + °hVx ~ °ixVz) = Ry + G!!’ (1 -3)

т iy’dt “Ь У - = Rz + Gz>

где Vx, Vy, Vz - проекции скорости V; Rx, Rz - проекции

результирующих сил (аэродинамических сил и тяги); Gxi Gyy Gz - проекции силы тяжести на связанные оси.

Проекции силы тяжести на связанные оси определяются с ис­пользованием направляющих косинусов (табл. 1.1) и имеют вид:

Gy = - G cos ft cos у; (1.4)

GZ = G cos d sin y.

При полете в атмосфере, неподвижной относительно Земли, проекции скорости полета связаны с углами атаки и скольжения и величиной скорости (V) соотношениями

Vх = V cos a cos р;

Vу = - V sin a cos р;

Связанная

Выражения для проекций результирующих сил Rx, Rin Rz имеют следующий вид:

Rx = - cxqS — f Р cos ([>;

Rty = cyqS p sin (1.6)

где cx, cy, сг - коэффициенты проекций аэродинамических сил на оси связанной системы координат; Р - гяга двигателей (обычно Р = / (У, #)); Фн - угол заклинення двигателя (фя > 0, когда проекция вектора тяги на ось 0Y самолета-положительна). Далее везде будем принимать = 0. Для определения входящей в выражение для скоростного напора q величины плотности р (Н) необходимо интегрировать уравнение для высоты

Vx sin ft+ Vy cos ft cos у - Vz cos ft sin у. (1.7)

Зависимость p (H) может находиться по таблицам стандартной атмосферы либо по приближенной формуле

где для высот полета И с 10 000 м К ж 10~4 . Для получения замкнутой системы уравнений движения самолета в связанных осях уравнения (13) необходимо дополнить кинематическими

соотношениями, которые позволяют определять углы ориентации самолета у, ft, г]1 и могут быть получены из уравнений (1.1):

■ф = Кcos У — sin V):

■fr = «у sin у + cos Vi (1-8)

Y = со* - tg ft (©у cos y - sinY),

а угловые скорости cov, со, coz определяются из уравнений движе­ния самолета относительно ЦМ. Уравнения движения самолета относительно центра масс могут быть получены из закона измене­ния момента количества движения

-^-=MR-ZxK.(1.9)

В этом векторном уравнении приняты следующие обозначения: ->■ ->

К - момент количества движения самолета; MR - главный мо­мент внешних сил, действующих на самолет.

Проекции вектора момента количества движения К на подвиж­ные оси в общем случае записываются в следующем виде:

К t = I х^Х? ху®у I XZ^ZI

К, Iху^х Н[ IУ^У Iyz^zi (1.10)

К7. - IXZ^X Iyz^y Iz®Z*

Уравнения (1.10) могут быть упрощены для наиболее распростра­ненного случая анализа динамики самолета, имеющего плоскость симметрии. В этом случае 1хг = Iyz - 0. Из уравнения (1.9), используя соотношения (1.10), получим систему уравнений дви­жения самолета относительно ЦМ:

h -jf — — hy («4 — ©Ї) + Uy — !*) = MRZ-

Если за сси OXYZ принять главные оси инерции, то 1ху = 0. В связи с этим дальнейший анализ динамики самолета будем производить, используя в качестве осей OXYZ главные оси инер­ции самолета.

Входящие в правые части уравнений (1.11) моменты являются суммой аэродинамических моментов и моментов от тяги двигателя. Аэродинамические моменты записываются в виде

где тХ1 ту, mz - безразмерные коэффициенты аэродинамических моментов.

Коэффициенты аэродинамических сил и моментов в общем случае выражаются в виде функциональных зависимостей от ки­нематических параметров движения и параметров подобия, за­висящих от режима полета:

у, г mXt = F(а, р, а, Р, coXJ coyj со2, бэ, ф, бн, М, Re). (1.12)

Числа М и Re характеризуют исходный режим полета, поэтому при анализе устойчивости или управляемых движений эти парамет­ры могут быть приняты постоянными величинами. В общем случае движения в правой части каждого из уравнений сил и моментов будет содержаться достаточно сложная функция, определяемая, как правило, на основе аппроксимации экспериментальных данных.

Нарис. 1.3 приведены правила знаков для основных пара­метров движения самолета, а также для величин отклонений органов и рычагов управления.

Для малых углов атаки и скольжения обычно используется представление аэродинамических коэффициентов в виде разложе­ний в ряд Тейлора по параметрам движения с сохранением только первых членов этого разложения. Такая математическая модель аэродинамических сил и моментов для малых углов атаки доста­точно хорошо согласуется с летной практикой и экспериментами в аэродинамических трубах. На основании материалов работ по аэродинамике самолетов различного назначения примем следу­ющую форму представления коэффициентов аэродинамических сил и моментов в функции параметров движения и углов отклонения органов управления:

сх ^ схо 4~ сх (°0»

У ^ СУ0 4" с^уа 4" С!/Ф;

сг = cfp + СгН6„;

тх - itixi|5 — f — ■Ь тхха>х-(- тх -f — /л* (І -|- — J — Л2ЛП6,!

о (0.- (0^- р б б„

ту = myfi + ту хо)х + ту Уыу + р + га/бэ + ту бн;

тг = тг (а) + тг zwz /я? ф.

При решении конкретных задач динамики полета общая форма представления аэродинамических сил и моментов может быть упрощена. Для малых углов атаки многие аэродинамические коэффициенты бокового движения являются константами, а про­дольный момент может быть представлен в виде

mz (а) = mzo + т£а,

где mz0 - коэффициент продольного момента при а = 0.

Входящие в выражение (1.13) составляющие, пропорциональ­ные углам аир, обычно находятся из статических испытаний моделей в аэродинамических трубах или расчетом. Для нахожде-

НИЯ производных, twx (у) необходимо проведение

динамических испытаний моделей. Однако в таких испытаниях обычно происходит одновременное изменение угловых скоростей и углов атаки и скольжения, в связи с чем при измерениях и обра­ботке одновременно определяются величины:

СО — СО- ,

тг* = т2г —mz;


0) , R. Юу I в.

mx* = тх + тх sin а; ту* = Шух ту sin а.

СО.. (О.. ft СО-. СО.. ft

ту% = т,/ -|- tiiy cos а; тх% = тху + тх cos а.

В работе показано, что для анализа динамики самолета,

особенно на малых углах атаки, допустимо представление момен-

тов в виде соотношений (1.13), в которых производные mS и т$

приняты равными нулю, а под выражениями т®х, и т. д.

понимаются величины m“j, т™у [см. (1.14)], определяемые в экс­перименте. Покажем, что это допустимо, ограничив рассмотрение задачами анализа полета с малыми углами атаки и скольжения при постоянной скорости полета. Подставив в уравнения (1.3) выра­жения для скоростей Vх, Vy, Vz (1.5) и производя необходимые преобразования, получим

= % COS а + coA. sina — f -^r }